Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing

نویسندگان

  • Felix Seidel
  • Daniel Schläpfer
  • Jens Nieke
  • Klaus I. Itten
چکیده

This study explores performance requirements for the retrieval of the atmospheric aerosol optical depth (AOD) by airborne optical remote sensing instruments. Independent of any retrieval techniques, the calculated AOD retrieval requirements are compared with the expected performance parameters of the upcoming hyperspectral sensor APEX at the reference wavelength of 550nm. The AOD accuracy requirements are defined to be capable of resolving transmittance differences of 0.01 to 0.04 according to the demands of atmospheric corrections for remote sensing applications. For the purposes of this analysis, the signal at the sensor level is simulated by radiation transfer equations. The resulting radiances are translated into the AOD retrieval sensitivity (Δτλaer ) and compared to the available measuring sensitivity of the sensor (NE ΔLλsensor). This is done for multiple signal-to-noise ratios (SNR) and surface reflectance values. It is shown that an SNR of 100 is adequate for AOD retrieval at 550nm under typical remote sensing conditions and a surface reflectance of 10% or less. Such dark surfaces require the lowest SNR values and therefore offer the best sensitivity for measuring AOD. Brighter surfaces with up to 30% reflectance require an SNR of around 300. It is shown that AOD retrieval for targets above 50% surface reflectance is more problematic with the current sensor performance as it may require an SNR larger than 1000. In general, feasibility is proven for the analyzed cases under simulated conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550 nm (τ(550)) and the surface reflectance (ρ) from a...

متن کامل

Performance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching

Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...

متن کامل

Aerosol Retrieval Using Remote-sensed Observations by Yueqing Wang A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Statistics

Aerosol Retrieval Using Remote-sensed Observations by Yueqing Wang Doctor of Philosophy in Statistics with the Designated Emphasis in Communication, Computation, and Statistics University of California, Berkeley Professor Bin Yu, Chair Atmospheric aerosols are solid particles and liquid droplets that are usually smaller than the diameter of a human hair. They can be found drifting in the air in...

متن کامل

Detecting Surface Waters Using Data Fusion of Optical and Radar Remote Sensing Sensor

Identification and monitoring of surface water using remote sensing have become very important in recent decades due to its importance in human needs and political decisions. Therefore, surface water has been studied using remote sensing systems and Sentinel-1 and Sentinel-2 sensors in this study. In this paper, two data fusion approaches and decision fusion improve the accuracy of surface wate...

متن کامل

Improved Aerosol Optical Thickness, Columnar Water Vapor, and Surface Reflectance Retrieval from Combined CASI and SASI Airborne Hyperspectral Sensors

An increasingly common requirement in remote sensing is the integration of hyperspectral data collected simultaneously from different sensors (and fore-optics) operating across different wavelength ranges. Data from one module are often relied on to correct information in the other, such as aerosol optical thickness (AOT) and columnar water vapor (CWV). This paper describes problems associated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2008